DYNAMIC EXPERIMENTAL PAIN MODELS: HOT NEWS OR BIG HYPE?

CARSTEN DAHL MØRCH

Dynamic experimental pain models

Graphesthesia

Dynamic experimental pain models

- Temporal models
 - Temporal Summation
 - Offset Analgesia
- Spatial models
 - Spatial summation
 - Lateral Inhibition
 - CPM

Conditioned Pain Modulation

 WDR neuron response attenuated by contralateral stimuli

Willer et al. J Neurophys. 1989, 62(5) Cadden et al. Brain research 1983, 275p1-11

 Painful hot water attenuated the RIII reflex

Temporal summation

Arendt-Nielsen Eur J Appl Physiol. 1994, 68:266-273 You et al. Brain Research 2004 110-119

Pain Modulatory Profile

Yarnetsky, Pain, 2015, 156(4)

Classifying chronic pain patients?

Vaegter and Graven-Nielsen, 2016

Predictive value of CPM and TS?

Predictive value of CPM and TS?

Predictive value of CPM and TS?

Center for Neuroplasticity and Pair

CPM in attack-free migraineurs

Kisler et al. Pain 2018 159(12)

Assessment measure	Bland-Altma	n analysis Bias	cv		ICC			
	(lower LoA -	(95% confiden	ce intervals)	(95% confidence intervals)				
	Before CPT	During CPT	Before CPT	During CPT	Before CPT	During CPT		
NWR threshold (mA)	0.8	1.1	12.6%	11.5%	0.93	0.94		
	(-4.1-5.7)	(-3.6-5.8)	(8.9%-15.4%)	(8.1%-14.2%)	(0.87-0.97)	(0.88-0.97)		

Manresa PLOS ONE 2014, 9(6)

Assessment measure	Bland-Altman analysis - Bias	cv	ICC		
	(lower LoA – upper LoA)	(95% confidence intervals)	(95% confidence intervals)		
	ΔCPM	ΔCPM	ΔCPM		
NWR threshold (mA)	0.3	64.1%	0.26		
	(-5.4-6.0)	(39.1%-81.8%)	(0-0.55)		

Manresa PLOS ONE 2014, 9(6)

Percentage of return to normal Δ CPM values	NWR thresho	ld
	N_c	N_p
100%	6	8
75%	10	14
50%	23	31
25%	93	124

Manresa PLOS ONE 2014, 9(6)

	Elec	trical	Неа	at	Har	ıdheld	Cuff	PDT	Cut	ff PTT
cs	CPT	Cuff	CPT	Cuff	CPT	Cuff	CPT	Cuff	CPT	Cuff
ICC (3,1)	0.09	0.12	0.10	0.48	0.49	0.04	0.44	0.53	0.51	0.14
95% CI	[-0.30, 0.45]	[-0.27, 0.48]	[-0.29, 0.46]	[0.12, 0.73]	[0.13, 0.73]	[-0.35, 0.41]	[0.08, 0.71]	[0.18, 0.76]	[0.16, 0.75]	[-0.25, 0.49]
CV [%]	105.7	503.9	78.5	442.7	63.6	125.3	107.6	143.1	127.3	295.2
Nc	23	534	13	412	9	33	24	43	34	183
Np	26	609	14	784	17	34	44	91	69	213

Imai, Somatosensory & Motor Research, 33:3-4, 169-177

Lateral Inhibition vs Spatial Summation

Quevedo et al. Pain 2017, 158(6)

Lateral Inhibition

Computer model of dorsal horn neurons during SCS

 If the GABAergic inhibitions are reduced, SCS looses its effect.

J $Neurophysiol \cdot doi:10.1152/jn.00254.2014 \cdot www.jn.org$

Offset Analgesia – The basic concept

Yelle et al. Pain 134 (2008) 174-186

Offset Analgesia

Activity in areas related to descending inhibition of pain is activated during offset analgesia compared to constant pain.

Yelle et al. J Neuroscience 29(33) (2009)

Spinal involvement

Sprenger et al. Neurolmage 183 (2018) 788–799

Offset Analgesia – A central or peripheral phenomenon

Ligato et al. Eur J Pain 22 (2018) 142-149

Offset Analgesia – A central or peripheral phenomenon

Petre, et al. Scientific Report 2017, 7p3894

Offset Analgesia – A central or peripheral phenomenon

Pedersen et al. Eur J Pain 22 (2018) 1678-1684

How is pain offset coded?

- an idea from the auditory system

 Different pathways are activated during on- and offset of sounds

(A) Post-inhibitory (B) Post-inhibitory (C) Inherited offset rebound facilitation response nhibition only AP threshold depol. V_{rest} $(I_{KLT} < I_H)$ hyperpol. $V_{rest}(I_{KI,T} > I_H)$ humm E_{cr} defined by KCC2 **Excitation only** Suprathreshold EPSP Subthreshold EPSP Net offset firing occurs as burst or Combined inputs single spike; (-40 -50 offsets from postinhibitory rebound tend to have shortest latencies Strongly hyperpolarizing Subthreshold EPSP Suprathreshold excitatory IPSPs interact with coincides with small input is received from

post-inhibitory depolarization

upstream sources

Kopp-Scheinpflug et al. Trends in Neuroscience

strongly depolarized V....

Offset Analgesia – reduced in chronic pain patients

	chronic pain			healthy control				Mean Difference	Mean Difference				
Study or Subgroup	Mean [%] SD [%]		Total	Mean [%]	SD [%]	Total	Weight	IV, Random, 95% CI [%]		IV, Rand	om, 9	5% CI [%]	
Kobinata et al. [40]	35.3	24.9	12	61.8	21.7	12	20.1%	-26.50 [-45.19, -7.81]	-	-	-		
Niesters et al. [22]	56	28	10	98	3	10	21.9%	-42.00 [-59.45, -24.55]		_			
Oudejans et al. [49]	65	26	34	98	5	34	40.5%	-33.00 [-41.90, -24.10]	_	-8-			
Zhang et al. [53]	27.8	28.7	17	39.4	32.7	17	17.5%	-11.60 [-32.28, 9.08]			+	-	
Total (95% CI)			73			73	100.0%	-29.92 [-40.30, -19.53]		•			
Heterogeneity: Tau ² =	48.72; Ch	$i^2 = 5.32$	2. df =	3 (P = 0.1)	5); 12 = 4	14%			-	-	\rightarrow	-+	-
Test for overall effect:					N. Form				-50	-25	0	25	50
								Patients	impaired		Controls	impaired	

Kobinata: Chronic pain patients

Niesters: Neuropathic pain patients

Oudejans: Fibromyalgia

Zhang: "Patients with chronic pain"

Szikszay et al. C.J.Pain 35(2), pp. 189-204

Tapentadol – OA and CPM

- Patients: Twenty-four patients with painful diabetic polyneuropathy (DPN)
- Treatment: 4 of Tapentadol
 - activates the μ-opioid receptor
 - inhibits norepinephrine reuptake
- Before treatment: no CPM or OA responses

Niester et al (2014) B.J. Anaesthesia 113(1): 148–56

ALLA THANK YOU FOR YOUR ATTENTION AALBORG UNIVERSITY